home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Celestin Apprentice 5
/
Apprentice-Release5.iso
/
Source Code
/
C
/
Applications
/
Python 1.3.3
/
pbmplus
/
libtiff
/
tif_lzw.c
< prev
next >
Wrap
Text File
|
1996-02-28
|
32KB
|
1,232 lines
#ifndef lint
static char rcsid[] = "$Header: /usr/people/sam/tiff/libtiff/RCS/tif_lzw.c,v 1.49 93/08/26 14:25:12 sam Exp $";
#endif
/*
* Copyright (c) 1988, 1989, 1990, 1991, 1992 Sam Leffler
* Copyright (c) 1991, 1992 Silicon Graphics, Inc.
*
* Permission to use, copy, modify, distribute, and sell this software and
* its documentation for any purpose is hereby granted without fee, provided
* that (i) the above copyright notices and this permission notice appear in
* all copies of the software and related documentation, and (ii) the names of
* Sam Leffler and Silicon Graphics may not be used in any advertising or
* publicity relating to the software without the specific, prior written
* permission of Sam Leffler and Silicon Graphics.
*
* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
*
* IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
* ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
* OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
* LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THIS SOFTWARE.
*/
/*
* TIFF Library.
* Rev 5.0 Lempel-Ziv & Welch Compression Support
*
* This code is derived from the compress program whose code is
* derived from software contributed to Berkeley by James A. Woods,
* derived from original work by Spencer Thomas and Joseph Orost.
*
* The original Berkeley copyright notice appears below in its entirety.
*/
#include "tiffiop.h"
#include <assert.h>
#include <stdio.h>
/*
* NB: The 5.0 spec describes a different algorithm than Aldus
* implements. Specifically, Aldus does code length transitions
* one code earlier than should be done (for real LZW).
* Earlier versions of this library implemented the correct
* LZW algorithm, but emitted codes in a bit order opposite
* to the TIFF spec. Thus, to maintain compatibility w/ Aldus
* we interpret MSB-LSB ordered codes to be images written w/
* old versions of this library, but otherwise adhere to the
* Aldus "off by one" algorithm.
*
* Future revisions to the TIFF spec are expected to "clarify this issue".
*/
#define LZW_COMPAT /* include backwards compatibility code */
/*
* Each strip of data is supposed to be terminated by a CODE_EOI.
* If the following #define is included, the decoder will also
* check for end-of-strip w/o seeing this code. This makes the
* library more robust, but also slower.
*/
#define LZW_CHECKEOS /* include checks for strips w/o EOI code */
#define MAXCODE(n) ((1<<(n))-1)
/*
* The TIFF spec specifies that encoded bit
* strings range from 9 to 12 bits.
*/
#define BITS_MIN 9 /* start with 9 bits */
#define BITS_MAX 12 /* max of 12 bit strings */
/* predefined codes */
#define CODE_CLEAR 256 /* code to clear string table */
#define CODE_EOI 257 /* end-of-information code */
#define CODE_FIRST 258 /* first free code entry */
#define CODE_MAX MAXCODE(BITS_MAX)
#define HSIZE 9001 /* 91% occupancy */
#define HSHIFT (13-8)
#ifdef LZW_COMPAT
/* NB: +1024 is for compatibility with old files */
#define CSIZE (MAXCODE(BITS_MAX)+1024)
#else
#define CSIZE (MAXCODE(BITS_MAX)+1)
#endif
typedef void (*predictorFunc)(char* data, u_long nbytes, int stride);
/*
* State block for each open TIFF
* file using LZW compression/decompression.
*/
typedef struct {
predictorFunc hordiff; /* horizontal differencing method */
u_long rowsize; /* width of tile/strip/row */
u_short stride; /* horizontal diferencing stride */
u_short nbits; /* # of bits/code */
u_short maxcode; /* maximum code for lzw_nbits */
u_short free_ent; /* next free entry in hash table */
long nextdata; /* next bits of i/o */
long nextbits; /* # of valid bits in lzw_nextdata */
} LZWState;
#define lzw_hordiff base.hordiff
#define lzw_rowsize base.rowsize
#define lzw_stride base.stride
#define lzw_nbits base.nbits
#define lzw_maxcode base.maxcode
#define lzw_free_ent base.free_ent
#define lzw_nextdata base.nextdata
#define lzw_nextbits base.nextbits
/*
* Decoding-specific state.
*/
typedef struct code_ent {
struct code_ent *next;
u_short length; /* string len, including this token */
u_char value; /* data value */
u_char firstchar; /* first token of string */
} code_t;
typedef int (*decodeFunc)(TIFF*, tidata_t, tsize_t, tsample_t);
typedef struct {
LZWState base;
long dec_nbitsmask; /* lzw_nbits 1 bits, right adjusted */
long dec_restart; /* restart count */
#ifdef LZW_CHECKEOS
long dec_bitsleft; /* available bits in raw data */
#endif
decodeFunc dec_decode; /* regular or backwards compatible */
code_t *dec_codep; /* current recognized code */
code_t *dec_oldcodep; /* previously recognized code */
code_t *dec_free_entp; /* next free entry */
code_t *dec_maxcodep; /* max available entry */
code_t dec_codetab[CSIZE];
} LZWDecodeState;
/*
* Encoding-specific state.
*/
typedef struct {
long hash;
long code;
} hash_t;
typedef struct {
LZWState base;
int enc_oldcode; /* last code encountered */
long enc_checkpoint; /* point at which to clear table */
#define CHECK_GAP 10000 /* enc_ratio check interval */
long enc_ratio; /* current compression ratio */
long enc_incount; /* (input) data bytes encoded */
long enc_outcount; /* encoded (output) bytes */
tidata_t enc_rawlimit; /* bound on tif_rawdata buffer */
hash_t enc_hashtab[HSIZE];
} LZWEncodeState;
static int LZWEncodePredRow(TIFF*, tidata_t, tsize_t, tsample_t);
static int LZWEncodePredTile(TIFF*, tidata_t, tsize_t, tsample_t);
static int LZWDecode(TIFF*, tidata_t, tsize_t, tsample_t);
#ifdef LZW_COMPAT
static int LZWDecodeCompat(TIFF*, tidata_t, tsize_t, tsample_t);
#endif
static int LZWDecodePredRow(TIFF*, tidata_t, tsize_t, tsample_t);
static int LZWDecodePredTile(TIFF*, tidata_t, tsize_t, tsample_t);
static void cl_hash(LZWEncodeState*);
static int
LZWCheckPredictor(TIFF* tif,
LZWState* sp, predictorFunc pred8bit, predictorFunc pred16bit)
{
TIFFDirectory *td = &tif->tif_dir;
sp->hordiff = NULL;
switch (td->td_predictor) {
case 1:
break;
case 2:
sp->stride = (td->td_planarconfig == PLANARCONFIG_CONTIG ?
td->td_samplesperpixel : 1);
switch (td->td_bitspersample) {
case 8:
sp->hordiff = pred8bit;
break;
case 16:
sp->hordiff = pred16bit;
break;
default:
TIFFError(tif->tif_name,
"Horizontal differencing \"Predictor\" not supported with %d-bit samples",
td->td_bitspersample);
return (0);
}
break;
default:
TIFFError(tif->tif_name, "\"Predictor\" value %d not supported",
td->td_predictor);
return (0);
}
if (sp->hordiff != NULL) {
/*
* Calculate the scanline/tile-width size in bytes.
*/
if (isTiled(tif))
sp->rowsize = TIFFTileRowSize(tif);
else
sp->rowsize = TIFFScanlineSize(tif);
} else
sp->rowsize = 0;
return (1);
}
/*
* LZW Decoder.
*/
#ifdef LZW_CHECKEOS
/*
* This check shouldn't be necessary because each
* strip is suppose to be terminated with CODE_EOI.
*/
#define NextCode(tif, sp, bp, code, get) { \
if ((sp)->dec_bitsleft < nbits) { \
TIFFWarning(tif->tif_name, \
"LZWDecode: Strip %d not terminated with EOI code", \
tif->tif_curstrip); \
code = CODE_EOI; \
} else { \
get(sp, bp, code); \
(sp)->dec_bitsleft -= nbits; \
} \
}
#else
#define NextCode(tif, sp, bp, code, get) get(sp, bp, code)
#endif
#define REPEAT4(n, op) \
switch (n) { \
default: { int i; for (i = n-4; i > 0; i--) { op; } } \
case 4: op; \
case 3: op; \
case 2: op; \
case 1: op; \
case 0: ; \
}
#define XREPEAT4(n, op) \
switch (n) { \
default: { int i; for (i = n-4; i > 0; i--) { op; } } \
case 2: op; \
case 1: op; \
case 0: ; \
}
static void
horAcc8(register char* cp, register u_long cc, register int stride)
{
if (cc > stride) {
cc -= stride;
/*
* Pipeline the most common cases.
*/
if (stride == 3) {
u_int cr = cp[0];
u_int cg = cp[1];
u_int cb = cp[2];
do {
cc -= 3, cp += 3;
cp[0] = (cr += cp[0]);
cp[1] = (cg += cp[1]);
cp[2] = (cb += cp[2]);
} while ((long)cc > 0);
} else if (stride == 4) {
u_int cr = cp[0];
u_int cg = cp[1];
u_int cb = cp[2];
u_int ca = cp[3];
do {
cc -= 4, cp += 4;
cp[0] = (cr += cp[0]);
cp[1] = (cg += cp[1]);
cp[2] = (cb += cp[2]);
cp[3] = (ca += cp[3]);
} while ((long)cc > 0);
} else {
do {
XREPEAT4(stride, cp[stride] += *cp; cp++)
cc -= stride;
} while ((long)cc > 0);
}
}
}
static void
swabHorAcc16(char* cp, u_long cc, register int stride)
{
register uint16* wp = (uint16 *)cp;
register u_long wc = cc / 2;
if (wc > stride) {
TIFFSwabArrayOfShort(wp, wc);
wc -= stride;
do {
REPEAT4(stride, wp[stride] += wp[0]; wp++)
wc -= stride;
} while (wc > 0);
}
}
static void
horAcc16(char* cp, u_long cc, register int stride)
{
register uint16* wp = (uint16 *)cp;
register u_long wc = cc / 2;
if (wc > stride) {
wc -= stride;
do {
REPEAT4(stride, wp[stride] += wp[0]; wp++)
wc -= stride;
} while (wc > 0);
}
}
/*
* Setup state for decoding a strip.
*/
static int
LZWPreDecode(TIFF* tif)
{
register LZWDecodeState *sp = (LZWDecodeState *)tif->tif_data;
if (sp == NULL) {
tif->tif_data = _TIFFmalloc(sizeof (LZWDecodeState));
if (tif->tif_data == NULL) {
TIFFError("LZWPreDecode",
"No space for LZW state block");
return (0);
}
sp = (LZWDecodeState *)tif->tif_data;
sp->dec_decode = NULL;
if (!LZWCheckPredictor(tif, &sp->base, horAcc8, horAcc16))
return (0);
if (sp->lzw_hordiff) {
/*
* Override default decoding method with
* one that does the predictor stuff.
*/
tif->tif_decoderow = LZWDecodePredRow;
tif->tif_decodestrip = LZWDecodePredTile;
tif->tif_decodetile = LZWDecodePredTile;
/*
* If the data is horizontally differenced
* 16-bit data that requires byte-swapping,
* then it must be byte swapped before the
* accumulation step. We do this with a
* special-purpose routine and override the
* normal post decoding logic that the library
* setup when the directory was read.
*/
if (tif->tif_flags&TIFF_SWAB) {
if (sp->lzw_hordiff == horAcc16) {
sp->lzw_hordiff = swabHorAcc16;
tif->tif_postdecode = TIFFNoPostDecode;
} /* else handle 32-bit case... */
}
}
/*
* Pre-load the table.
*/
{ int code;
for (code = 255; code >= 0; code--) {
sp->dec_codetab[code].value = code;
sp->dec_codetab[code].firstchar = code;
sp->dec_codetab[code].length = 1;
sp->dec_codetab[code].next = NULL;
}
}
}
/*
* Check for old bit-reversed codes.
*/
if (tif->tif_rawdata[0] == 0 && (tif->tif_rawdata[1] & 0x1)) {
#ifdef LZW_COMPAT
if (!sp->dec_decode) {
if (sp->lzw_hordiff == NULL) {
/*
* Override default decoding methods with
* ones that deal with the old coding.
* Otherwise the predictor versions set
* above will call the compatibility routines
* through the dec_decode method.
*/
tif->tif_decoderow = LZWDecodeCompat;
tif->tif_decodestrip = LZWDecodeCompat;
tif->tif_decodetile = LZWDecodeCompat;
}
TIFFWarning(tif->tif_name,
"Old-style LZW codes, convert file");
}
sp->lzw_maxcode = MAXCODE(BITS_MIN);
sp->dec_decode = LZWDecodeCompat;
#else /* !LZW_COMPAT */
if (!sp->dec_decode) {
TIFFError(tif->tif_name,
"Old-style LZW codes not supported");
sp->dec_decode = LZWDecode;
}
return (0);
#endif/* !LZW_COMPAT */
} else {
sp->lzw_maxcode = MAXCODE(BITS_MIN)-1;
sp->dec_decode = LZWDecode;
}
sp->lzw_nbits = BITS_MIN;
sp->lzw_nextbits = 0;
sp->lzw_nextdata = 0;
sp->dec_restart = 0;
sp->dec_nbitsmask = MAXCODE(BITS_MIN);
#ifdef LZW_CHECKEOS
sp->dec_bitsleft = tif->tif_rawdatasize << 3;
#endif
sp->dec_free_entp = sp->dec_codetab + CODE_FIRST;
sp->dec_oldcodep = &sp->dec_codetab[-1];
sp->dec_maxcodep = &sp->dec_codetab[sp->dec_nbitsmask-1];
return (1);
}
/*
* Decode a "hunk of data".
*/
#define GetNextCode(sp, bp, code) { \
nextdata = (nextdata<<8) | *(bp)++; \
nextbits += 8; \
if (nextbits < nbits) { \
nextdata = (nextdata<<8) | *(bp)++; \
nextbits += 8; \
} \
code = (nextdata >> (nextbits-nbits)) & nbitsmask; \
nextbits -= nbits; \
}
static void
codeLoop(TIFF* tif)
{
TIFFError(tif->tif_name,
"LZWDecode: Bogus encoding, loop in the code table; scanline %d",
tif->tif_row);
}
static int
LZWDecode(TIFF* tif, tidata_t op0, tsize_t occ0, tsample_t s)
{
LZWDecodeState *sp = (LZWDecodeState *)tif->tif_data;
char *op = (char*) op0;
long occ = (long) occ0;
char *tp;
u_char *bp;
int code, nbits, nextbits, len;
long nextdata, nbitsmask;
code_t *codep, *free_entp, *maxcodep, *oldcodep;
assert(sp != NULL);
/*
* Restart interrupted output operation.
*/
if (sp->dec_restart) {
int residue;
codep = sp->dec_codep;
residue = codep->length - sp->dec_restart;
if (residue > occ) {
/*
* Residue from previous decode is sufficient
* to satisfy decode request. Skip to the
* start of the decoded string, place decoded
* values in the output buffer, and return.
*/
sp->dec_restart += occ;
do {
codep = codep->next;
} while (--residue > occ && codep);
if (codep) {
tp = op + occ;
do {
*--tp = codep->value;
codep = codep->next;
} while (--occ && codep);
}
return (1);
}
/*
* Residue satisfies only part of the decode request.
*/
op += residue, occ -= residue;
tp = op;
do {
int t;
--tp;
t = codep->value;
codep = codep->next;
*tp = t;
} while (--residue && codep);
sp->dec_restart = 0;
}
bp = (u_char *)tif->tif_rawcp;
nbits = sp->lzw_nbits;
nextdata = sp->lzw_nextdata;
nextbits = sp->lzw_nextbits;
nbitsmask = sp->dec_nbitsmask;
oldcodep = sp->dec_oldcodep;
free_entp = sp->dec_free_entp;
maxcodep = sp->dec_maxcodep;
while (occ > 0) {
NextCode(tif, sp, bp, code, GetNextCode);
if (code == CODE_EOI)
break;
if (code == CODE_CLEAR) {
free_entp = sp->dec_codetab + CODE_FIRST;
nbits = BITS_MIN;
nbitsmask = MAXCODE(BITS_MIN);
maxcodep = sp->dec_codetab + nbitsmask-1;
NextCode(tif, sp, bp, code, GetNextCode);
if (code == CODE_EOI)
break;
*op++ = code, occ--;
oldcodep = sp->dec_codetab + code;
continue;
}
codep = sp->dec_codetab + code;
/*
* Add the new entry to the code table.
*/
assert(&sp->dec_codetab[0] <= free_entp && free_entp < &sp->dec_codetab[CSIZE]);
free_entp->next = oldcodep;
free_entp->firstchar = free_entp->next->firstchar;
free_entp->length = free_entp->next->length+1;
free_entp->value = (codep < free_entp) ?
codep->firstchar : free_entp->firstchar;
if (++free_entp > maxcodep) {
if (++nbits > BITS_MAX) /* should not happen */
nbits = BITS_MAX;
nbitsmask = MAXCODE(nbits);
maxcodep = sp->dec_codetab + nbitsmask-1;
}
oldcodep = codep;
if (code >= 256) {
/*
* Code maps to a string, copy string
* value to output (written in reverse).
*/
if (codep->length > occ) {
/*
* String is too long for decode buffer,
* locate portion that will fit, copy to
* the decode buffer, and setup restart
* logic for the next decoding call.
*/
sp->dec_codep = codep;
do {
codep = codep->next;
} while (codep && codep->length > occ);
if (codep) {
sp->dec_restart = occ;
tp = op + occ;
do {
*--tp = codep->value;
codep = codep->next;
} while (--occ && codep);
if (codep)
codeLoop(tif);
}
break;
}
len = codep->length;
tp = op + len;
do {
int t;
--tp;
t = codep->value;
codep = codep->next;
*tp = t;
} while (codep && tp > op);
if (codep) {
codeLoop(tif);
break;
}
op += len, occ -= len;
} else
*op++ = code, occ--;
}
tif->tif_rawcp = (tidata_t) bp;
sp->lzw_nbits = nbits;
sp->lzw_nextdata = nextdata;
sp->lzw_nextbits = nextbits;
sp->dec_nbitsmask = nbitsmask;
sp->dec_oldcodep = oldcodep;
sp->dec_free_entp = free_entp;
sp->dec_maxcodep = maxcodep;
if (occ > 0) {
TIFFError(tif->tif_name,
"LZWDecode: Not enough data at scanline %d (short %d bytes)",
tif->tif_row, occ);
return (0);
}
return (1);
}
#ifdef LZW_COMPAT
/*
* Decode a "hunk of data" for old images.
*/
#define GetNextCodeCompat(sp, bp, code) { \
nextdata |= *(bp)++ << nextbits; \
nextbits += 8; \
if (nextbits < nbits) { \
nextdata |= *(bp)++ << nextbits; \
nextbits += 8; \
} \
code = nextdata & nbitsmask; \
nextdata >>= nbits; \
nextbits -= nbits; \
}
static int
LZWDecodeCompat(TIFF* tif, tidata_t op0, tsize_t occ0, tsample_t s)
{
LZWDecodeState *sp = (LZWDecodeState *)tif->tif_data;
char *op = (char*) op0;
long occ = (long) occ0;
char *tp;
u_char *bp;
int code, nbits, nextbits;
long nextdata, nbitsmask;
code_t *codep, *free_entp, *maxcodep, *oldcodep;
assert(sp != NULL);
/*
* Restart interrupted output operation.
*/
if (sp->dec_restart) {
int residue;
codep = sp->dec_codep;
residue = codep->length - sp->dec_restart;
if (residue > occ) {
/*
* Residue from previous decode is sufficient
* to satisfy decode request. Skip to the
* start of the decoded string, place decoded
* values in the output buffer, and return.
*/
sp->dec_restart += occ;
do {
codep = codep->next;
} while (--residue > occ);
tp = op + occ;
do {
*--tp = codep->value;
codep = codep->next;
} while (--occ);
return (1);
}
/*
* Residue satisfies only part of the decode request.
*/
op += residue, occ -= residue;
tp = op;
do {
*--tp = codep->value;
codep = codep->next;
} while (--residue);
sp->dec_restart = 0;
}
bp = (u_char *)tif->tif_rawcp;
nbits = sp->lzw_nbits;
nextdata = sp->lzw_nextdata;
nextbits = sp->lzw_nextbits;
nbitsmask = sp->dec_nbitsmask;
oldcodep = sp->dec_oldcodep;
free_entp = sp->dec_free_entp;
maxcodep = sp->dec_maxcodep;
while (occ > 0) {
NextCode(tif, sp, bp, code, GetNextCodeCompat);
if (code == CODE_EOI)
break;
if (code == CODE_CLEAR) {
free_entp = sp->dec_codetab + CODE_FIRST;
nbits = BITS_MIN;
nbitsmask = MAXCODE(BITS_MIN);
maxcodep = sp->dec_codetab + nbitsmask;
NextCode(tif, sp, bp, code, GetNextCodeCompat);
if (code == CODE_EOI)
break;
*op++ = code, occ--;
oldcodep = sp->dec_codetab + code;
continue;
}
codep = sp->dec_codetab + code;
/*
* Add the new entry to the code table.
*/
assert(&sp->dec_codetab[0] <= free_entp && free_entp < &sp->dec_codetab[CSIZE]);
free_entp->next = oldcodep;
free_entp->firstchar = free_entp->next->firstchar;
free_entp->length = free_entp->next->length+1;
free_entp->value = (codep < free_entp) ?
codep->firstchar : free_entp->firstchar;
if (++free_entp > maxcodep) {
if (++nbits > BITS_MAX) /* should not happen */
nbits = BITS_MAX;
nbitsmask = MAXCODE(nbits);
maxcodep = sp->dec_codetab + nbitsmask;
}
oldcodep = codep;
if (code >= 256) {
/*
* Code maps to a string, copy string
* value to output (written in reverse).
*/
if (codep->length > occ) {
/*
* String is too long for decode buffer,
* locate portion that will fit, copy to
* the decode buffer, and setup restart
* logic for the next decoding call.
*/
sp->dec_codep = codep;
do {
codep = codep->next;
} while (codep->length > occ);
sp->dec_restart = occ;
tp = op + occ;
do {
*--tp = codep->value;
codep = codep->next;
} while (--occ);
break;
}
op += codep->length, occ -= codep->length;
tp = op;
do {
*--tp = codep->value;
} while (codep = codep->next);
} else
*op++ = code, occ--;
}
tif->tif_rawcp = (tidata_t) bp;
sp->lzw_nbits = nbits;
sp->lzw_nextdata = nextdata;
sp->lzw_nextbits = nextbits;
sp->dec_nbitsmask = nbitsmask;
sp->dec_oldcodep = oldcodep;
sp->dec_free_entp = free_entp;
sp->dec_maxcodep = maxcodep;
if (occ > 0) {
TIFFError(tif->tif_name,
"LZWDecodeCompat: Not enough data at scanline %d (short %d bytes)",
tif->tif_row, occ);
return (0);
}
return (1);
}
#endif /* LZW_COMPAT */
/*
* Decode a scanline and apply the predictor routine.
*/
static int
LZWDecodePredRow(TIFF* tif, tidata_t op0, tsize_t occ0, tsample_t s)
{
LZWDecodeState *sp = (LZWDecodeState *)tif->tif_data;
assert(sp != NULL);
assert(sp->dec_decode != NULL);
if ((*sp->dec_decode)(tif, op0, occ0, s)) {
(*sp->lzw_hordiff)((char *)op0, occ0, sp->lzw_stride);
return (1);
} else
return (0);
}
/*
* Decode a tile/strip and apply the predictor routine.
* Note that horizontal differencing must be done on a
* row-by-row basis. The width of a "row" has already
* been calculated at pre-decode time according to the
* strip/tile dimensions.
*/
static int
LZWDecodePredTile(TIFF* tif, tidata_t op0, tsize_t occ0, tsample_t s)
{
LZWDecodeState *sp = (LZWDecodeState *)tif->tif_data;
u_long rowsize;
assert(sp != NULL);
assert(sp->dec_decode != NULL);
if (!(*sp->dec_decode)(tif, op0, occ0, s))
return (0);
rowsize = sp->lzw_rowsize;
assert(rowsize > 0);
while ((long)occ0 > 0) {
(*sp->lzw_hordiff)((char*)op0, rowsize, sp->lzw_stride);
occ0 -= rowsize;
op0 += rowsize;
}
return (1);
}
/*
* LZW Encoding.
*/
static void
horDiff8(register char* cp, register u_long cc, register int stride)
{
if (cc > stride) {
cc -= stride;
/*
* Pipeline the most common cases.
*/
if (stride == 3) {
int r1, g1, b1;
int r2 = cp[0];
int g2 = cp[1];
int b2 = cp[2];
do {
r1 = cp[3]; cp[3] = r1-r2; r2 = r1;
g1 = cp[4]; cp[4] = g1-g2; g2 = g1;
b1 = cp[5]; cp[5] = b1-b2; b2 = b1;
cp += 3;
} while ((long)(cc -= 3) > 0);
} else if (stride == 4) {
int r1, g1, b1, a1;
int r2 = cp[0];
int g2 = cp[1];
int b2 = cp[2];
int a2 = cp[3];
do {
r1 = cp[4]; cp[4] = r1-r2; r2 = r1;
g1 = cp[5]; cp[5] = g1-g2; g2 = g1;
b1 = cp[6]; cp[6] = b1-b2; b2 = b1;
a1 = cp[7]; cp[7] = a1-a2; a2 = a1;
cp += 4;
} while ((long)(cc -= 4) > 0);
} else {
cp += cc - 1;
do {
REPEAT4(stride, cp[stride] -= cp[0]; cp--)
} while ((long)(cc -= stride) > 0);
}
}
}
static void
horDiff16(char* cp, u_long cc, register int stride)
{
register int16 *wp = (int16*)cp;
register u_long wc = cc/2;
if (wc > stride) {
wc -= stride;
wp += wc - 1;
do {
REPEAT4(stride, wp[stride] -= wp[0]; wp--)
wc -= stride;
} while (wc > 0);
}
}
/*
* Reset encoding state at the start of a strip.
*/
static int
LZWPreEncode(TIFF* tif)
{
register LZWEncodeState *sp = (LZWEncodeState *)tif->tif_data;
if (sp == NULL) {
tif->tif_data = _TIFFmalloc(sizeof (LZWEncodeState));
if (tif->tif_data == NULL) {
TIFFError("LZWPreEncode",
"No space for LZW state block");
return (0);
}
sp = (LZWEncodeState *)tif->tif_data;
if (!LZWCheckPredictor(tif, &sp->base, horDiff8, horDiff16))
return (0);
if (sp->lzw_hordiff != NULL) {
tif->tif_encoderow = LZWEncodePredRow;
tif->tif_encodestrip = LZWEncodePredTile;
tif->tif_encodetile = LZWEncodePredTile;
}
}
sp->lzw_nbits = BITS_MIN;
sp->lzw_maxcode = MAXCODE(BITS_MIN);
sp->lzw_free_ent = CODE_FIRST;
sp->lzw_nextbits = 0;
sp->lzw_nextdata = 0;
sp->enc_checkpoint = CHECK_GAP;
sp->enc_ratio = 0;
sp->enc_incount = 0;
sp->enc_outcount = 0;
/*
* The 4 here insures there is space for 2 max-sized
* codes in LZWEncode and LZWPostDecode.
*/
sp->enc_rawlimit = tif->tif_rawdata + tif->tif_rawdatasize-1 - 4;
cl_hash(sp); /* clear hash table */
sp->enc_oldcode = -1; /* generates CODE_CLEAR in LZWEncode */
return (1);
}
#define CALCRATIO(sp, rat) { \
if (incount > 0x007fffff) { /* NB: shift will overflow */\
rat = outcount >> 8; \
rat = (rat == 0 ? 0x7fffffff : incount/rat); \
} else \
rat = (incount<<8) / outcount; \
}
#define PutNextCode(op, c) { \
nextdata = (nextdata << nbits) | c; \
nextbits += nbits; \
*op++ = nextdata >> (nextbits-8); \
nextbits -= 8; \
if (nextbits >= 8) { \
*op++ = nextdata >> (nextbits-8); \
nextbits -= 8; \
} \
outcount += nbits; \
}
/*
* Encode a chunk of pixels.
*
* Uses an open addressing double hashing (no chaining) on the
* prefix code/next character combination. We do a variant of
* Knuth's algorithm D (vol. 3, sec. 6.4) along with G. Knott's
* relatively-prime secondary probe. Here, the modular division
* first probe is gives way to a faster exclusive-or manipulation.
* Also do block compression with an adaptive reset, whereby the
* code table is cleared when the compression ratio decreases,
* but after the table fills. The variable-length output codes
* are re-sized at this point, and a CODE_CLEAR is generated
* for the decoder.
*/
static int
LZWEncode(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
{
register LZWEncodeState *sp = (LZWEncodeState *)tif->tif_data;
register long fcode;
register hash_t *hp;
register int h, c, ent, disp;
long incount, outcount, checkpoint;
long nextdata, nextbits;
int free_ent, maxcode, nbits;
tidata_t op, limit;
if (sp == NULL)
return (0);
/*
* Load local state.
*/
incount = sp->enc_incount;
outcount = sp->enc_outcount;
checkpoint = sp->enc_checkpoint;
nextdata = sp->lzw_nextdata;
nextbits = sp->lzw_nextbits;
free_ent = sp->lzw_free_ent;
maxcode = sp->lzw_maxcode;
nbits = sp->lzw_nbits;
op = tif->tif_rawcp;
limit = sp->enc_rawlimit;
ent = sp->enc_oldcode;
if (ent == -1 && cc > 0) {
/*
* NB: This is safe because it can only happen
* at the start of a strip where we know there
* is space in the data buffer.
*/
PutNextCode(op, CODE_CLEAR);
ent = *bp++; cc--; incount++;
}
while (cc > 0) {
c = *bp++; cc--; incount++;
fcode = ((long)c << BITS_MAX) + ent;
h = (c << HSHIFT) ^ ent; /* xor hashing */
hp = &sp->enc_hashtab[h];
if (hp->hash == fcode) {
ent = hp->code;
continue;
}
if (hp->hash >= 0) {
/*
* Primary hash failed, check secondary hash.
*/
disp = HSIZE - h;
if (h == 0)
disp = 1;
do {
if ((hp -= disp) < sp->enc_hashtab)
hp += HSIZE;
if (hp->hash == fcode) {
ent = hp->code;
goto hit;
}
} while (hp->hash >= 0);
}
/*
* New entry, emit code and add to table.
*/
/*
* Verify there is space in the buffer for the code
* and any potential Clear code that might be emitted
* below. The value of limit is setup so that there
* are at least 4 bytes free--room for 2 codes.
*/
if (op > limit) {
tif->tif_rawcc = op - tif->tif_rawdata;
TIFFFlushData1(tif);
op = tif->tif_rawdata;
}
PutNextCode(op, ent);
ent = c;
hp->code = free_ent++;
hp->hash = fcode;
if (free_ent == CODE_MAX-1) {
/* table is full, emit clear code and reset */
cl_hash(sp);
sp->enc_ratio = 0;
incount = 0;
outcount = 0;
free_ent = CODE_FIRST;
PutNextCode(op, CODE_CLEAR);
nbits = BITS_MIN;
maxcode = MAXCODE(BITS_MIN);
} else {
/*
* If the next entry is going to be too big for
* the code size, then increase it, if possible.
*/
if (free_ent > maxcode) {
nbits++;
assert(nbits <= BITS_MAX);
maxcode = MAXCODE(nbits);
} else if (incount >= checkpoint) {
long rat;
/*
* Check compression ratio and, if things seem
* to be slipping, clear the hash table and
* reset state. The compression ratio is a
* 24+8-bit fractional number.
*/
checkpoint = incount+CHECK_GAP;
CALCRATIO(sp, rat);
if (rat <= sp->enc_ratio) {
cl_hash(sp);
sp->enc_ratio = 0;
incount = 0;
outcount = 0;
free_ent = CODE_FIRST;
PutNextCode(op, CODE_CLEAR);
nbits = BITS_MIN;
maxcode = MAXCODE(BITS_MIN);
} else
sp->enc_ratio = rat;
}
}
hit:
;
}
/*
* Restore global state.
*/
sp->enc_incount = incount;
sp->enc_outcount = outcount;
sp->enc_checkpoint = checkpoint;
sp->enc_oldcode = ent;
sp->lzw_nextdata = nextdata;
sp->lzw_nextbits = nextbits;
sp->lzw_free_ent = free_ent;
sp->lzw_maxcode = maxcode;
sp->lzw_nbits = nbits;
tif->tif_rawcp = op;
return (1);
}
static int
LZWEncodePredRow(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
{
LZWEncodeState *sp = (LZWEncodeState *)tif->tif_data;
assert(sp != NULL);
assert(sp->lzw_hordiff != NULL);
/* XXX horizontal differencing alters user's data XXX */
(*sp->lzw_hordiff)((char *)bp, cc, sp->lzw_stride);
return (LZWEncode(tif, bp, cc, s));
}
static int
LZWEncodePredTile(TIFF* tif, tidata_t bp0, tsize_t cc0, tsample_t s)
{
LZWEncodeState *sp = (LZWEncodeState *)tif->tif_data;
u_long cc = cc0, rowsize;
u_char *bp = bp0;
assert(sp != NULL);
assert(sp->lzw_hordiff != NULL);
rowsize = sp->lzw_rowsize;
assert(rowsize > 0);
while ((long)cc > 0) {
(*sp->lzw_hordiff)((char *)bp, rowsize, sp->lzw_stride);
cc -= rowsize;
bp += rowsize;
}
return (LZWEncode(tif, bp0, cc0, s));
}
/*
* Finish off an encoded strip by flushing the last
* string and tacking on an End Of Information code.
*/
static int
LZWPostEncode(TIFF* tif)
{
register LZWEncodeState *sp = (LZWEncodeState *)tif->tif_data;
tidata_t op = tif->tif_rawcp;
long nextbits = sp->lzw_nextbits;
long nextdata = sp->lzw_nextdata;
long outcount = sp->enc_outcount;
int nbits = sp->lzw_nbits;
if (op > sp->enc_rawlimit) {
tif->tif_rawcc = op - tif->tif_rawdata;
TIFFFlushData1(tif);
op = tif->tif_rawdata;
}
if (sp->enc_oldcode != -1) {
PutNextCode(op, sp->enc_oldcode);
sp->enc_oldcode = -1;
}
PutNextCode(op, CODE_EOI);
if (nextbits > 0)
*op++ = nextdata << (8-nextbits);
tif->tif_rawcc = op - tif->tif_rawdata;
return (1);
}
/*
* Reset encoding hash table.
*/
static void
cl_hash(LZWEncodeState* sp)
{
register hash_t *hp = &sp->enc_hashtab[HSIZE-1];
register long i = HSIZE-8;
do {
i -= 8;
hp[-7].hash = -1;
hp[-6].hash = -1;
hp[-5].hash = -1;
hp[-4].hash = -1;
hp[-3].hash = -1;
hp[-2].hash = -1;
hp[-1].hash = -1;
hp[ 0].hash = -1;
hp -= 8;
} while (i >= 0);
for (i += 8; i > 0; i--, hp--)
hp->hash = -1;
}
static void
LZWCleanup(TIFF* tif)
{
if (tif->tif_data) {
_TIFFfree(tif->tif_data);
tif->tif_data = NULL;
}
}
int
TIFFInitLZW(TIFF* tif)
{
tif->tif_predecode = LZWPreDecode;
tif->tif_decoderow = LZWDecode;
tif->tif_decodestrip = LZWDecode;
tif->tif_decodetile = LZWDecode;
tif->tif_preencode = LZWPreEncode;
tif->tif_postencode = LZWPostEncode;
tif->tif_encoderow = LZWEncode;
tif->tif_encodestrip = LZWEncode;
tif->tif_encodetile = LZWEncode;
tif->tif_cleanup = LZWCleanup;
return (1);
}
/*
* Copyright (c) 1985, 1986 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* James A. Woods, derived from original work by Spencer Thomas
* and Joseph Orost.
*
* Redistribution and use in source and binary forms are permitted
* provided that the above copyright notice and this paragraph are
* duplicated in all such forms and that any documentation,
* advertising materials, and other materials related to such
* distribution and use acknowledge that the software was developed
* by the University of California, Berkeley. The name of the
* University may not be used to endorse or promote products derived
* from this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/